Earlier and Higher Fusion Rate

0.5mg | 1.0mg | 3.0mg

NOVOSIS I Novo (new) + Oss (bone) + Sis (genesis) 행성하다

Earlier and Higher Fusion Rate

01. 국내 최초 출시 Spine / Trauma용 rhBMP-2

2013.02월 치과 영역으로 허가받은 이후,¹ 2017년 상반기 국내 최초 Spine/Trauma 영역에서 허가 받은 고순도 rhBMP-2 제품 ²

02. 빠르고 높은 유합율

PLF 수술에서 12주, 24주 후, 자기골 이식 대비 빠르고 높은 골유합율을 나타내었습니다.³

03. 우수한 안전성

PLF 수술에서 rhBMP-2와 관련된 심각한 부작용은 발견되지 않았습니다.3

Ref.

- 1. 의료기기 제조허가증(제허 13-471호)
- 2, NOVOSIS 허가증
- 3. 임상시험 결과보고서(BioALPHA, BA06-CP01)

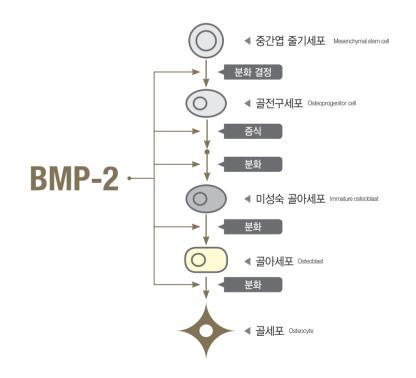
BMP-2 라?

Bone Morphogenetic Protein-2

"BMP(Bone Morphogenetic Protein)-2"는 TGF(Transforming Growth Factor) Superfamily로 골과 연골조직의 성장과 수복에 관여하는 "골형성 촉진 단백질"입니다.

♦ rhBMP-2의 개발 역사

1960's 1980's 1988 2002
Discovery Identification BMP-2 Cloning BMP-2 Cloning


♦ 대웅 rhBMP-2

- The First 세계 최초 WHO에 등록된 E,coli 유래 rhBMP-26
- The Only 국내 유일 Spine/Trauma에 적응증을 획득한 제품 7
- The Original 네보테르민(Nebotermin)이란 '국제 일반명'을 가지는 "오리지널 국제 표준 성분" 6

rhBMP-2

작용기전®

노보시스는 주성분인 rhBMP-2의 **골유도 작용(Osteoinduction)**을 통해 **뼈 형성을 촉진**합니다.

Osteoinduction

골유도를 의미하며 미분화된 줄기세포가 뼈를 생성하는 능력을 지닌 골 전구세포로 분열하도록 유도함으로써 골세포로 분화하여 뼈를 생성하는 과정

Ref

- 1. MR Urist and BS Strates, Bone morphogenetic protein. J Dent Res, 1971. 50(6): p. 1392-406.
- 2. TK Sampath and AH Reddi, Dissociative extraction and reconstitution of extracellular matrix components involved in local bone differentiation. Proc Natl Acad Sci U S A, 1981. 78(12): p. 7599-603.
- 3. TK Sampath and N Muthukumaran, et. al., Isolation of osteogenin, an extracellular matrix-associated, bone-inductive protein, by heparin affinity chromatography. Proc Natl Acad Sci U S A, 1987. 84(20): p. 7109-13.
- 4. JM Wozney and V Rosen, et. al., Novel regulators of bone formation: molecular clones and activities. Science, 1988. 242(4885): p. 1528-34.
- 5. KL Ong and ML Villarraga, et. al., Off-label use of bone morphogenetic proteins in the United States using administrative data. Spine (Phila Pa 1976), 2010. 35(19): p. 1794-800.
- 6. WHO Drug Information, Vol. 28, No 1, 2014, List 71 $\,$
- 7. NOVOSIS 허가증
- 8. M Wu and G Chen, et. al., TGF-beta and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res, 2016. 4: p. 16009.

E. coli vs CHO cell derived BMP-2

제조 공정 비교

- · E. coli : Escherichia coli
- · CHO: Chinese Hamster Ovary

deri	E.Coli derived rhBMP-2 (NOVOSIS)		CHO cell derived BMP-2	
,	• 대장균		• 동물세포	
	• 세포배양기			
	• 연속원심분리		• 세포배양기	
	• 연속초음파파쇄			
12	• 불용성 단백질 회수	30	• 세포제거	
days	• 수용성 단백질 변환	days		
	• 3차 구조화		• 정제	
	• 정제			
	• 제품		↓ ▼ • 제품	
,	<u> </u>			
단	시간 내 생산 가능			

특징 비교

	E.Coli derived rhBMP-2 (NOVOSIS)	CHO cell derived rhBMP-2
세포증식	매우 빠름 (30min)	느림 (24h)
발현율	높음 (1~5%)	낮음 ((1%)
대량 생산율	높음	매우 낮음
배양배지 조성	최소 (단순)	복잡
생산성	매우 높음	낮음
배양배지 가격	매우 낮음	매우 높음
생산단가	매우 낮음	매우 높음

rhBMP-2의 정제와 약물 동태 및 급성 독성에 관한 보고

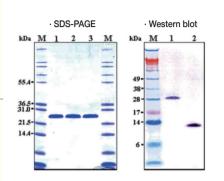
E.Coli derived rhBMP-2 단백질의 분리/정제¹

*SDS-PAG

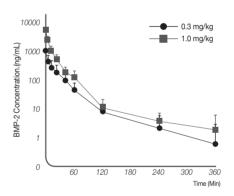
폴리 아크릴 아미드 젤 전기 영동법을 이용해 단백질의 크기(분자량)를 알아낼 수 있는 방법.

*Western blot

항원-항체 반응을 이용해 특정 단백질을 검출하는 방법


*이량체(Homodimer)

두 개의 동일한 단백질이 쌍을 이루어 결합된 상태. 단량체 (Monomer) 단백질의 2배 크기(분자량)에서 검출 됨.


Rat에서

E. coli derived rhBMP-2 단백질의 약물동태학 결과² SDS-PAGE* 결과, 정제된 rhBMP-2는 고순도, CHO cell-derived BMP-2와 동일한 분자량 이량체*(26kDa)로 분리/ 정제하였습니다.

Western blot* 결과, 26kDa의 정제된 rhBMP-2(lane 1) 는 13kDa 단량체(lane 2)로 검출되었습니다.

rhBMP-2는 혈중 내 반감기가 약 20분 내외로 매우 짧았으며, 혈관을 통해 간으로 이동하고 대사되어 신속하게 체외로 배출되었습니다

PK	rhBMP-2			
FK	0.3 mg/kg	1 mg/kg		
t _{1/2} (min)	22.3 ± 6.5	19.6 ± 2.1		
C ₀ (ng/mL)	1415.1 ± 193.7	5185.5 ± 1658.0		
AUG _{last} (ng.min/mL)	15535.6 ± 6001.3	44793.4 ± 7110.3		
Vz_obs (mL/kg)	640.0 ± 132.9	647.0 ± 157.5		
Cl_obs (mL/min/kg)	21.4 ± 7.9	22.8 ± 4.0		

09

E,Coli derived rhBMP-2 단백질의 SD rat에서 급성 독성 결과^{3,4}

* MTD: Maximum Tolerated Dosage
* NOAEL: No-observed-adverse-effect level

쥐 모델에서 rhBMP-2 단백질의 정맥 단회투여결과, 7mg/kg까지 독성이 발생하지 않았습니다.

쥐 모델에서 ${\rm rhBMP-2}$ 단백질의 2주 간 정맥 반복투여결과, $0.5{\rm mg/kg}$ 까지 독성이 발생하지 않았습니다.

Study type	Species/Strain	Route	Duration	Dose (mg/kg)	Relevant Findings
Single Dose Toxicity	Rat/Sprague-Dawley (male)	IV	single	0, 0.7, 1.8, 7	• MTD > 7 mg/kg
Repeated Dose toxicity	Rat/Sprague-Dawley (male & female)	IV	2 weeks	0, 0.05, 0.18, 0.5	No observation of DWP431 related toxicity NOAEL > 0.5 mg/kg

Ref.

- 1. JH Lee and SJ Jang et. al., Expression, Purification and Osteogenic Bioactivity of Recombinant Human BMP-2 Derived by Escherichia Coli. *Tissue Engineering and Regenerative Medicine*, 2011. 8(1): p. 8-15.

 2. Data on file.
- 3. JH Lee and EN Lee, et. al., Acute Intravenous Injection Toxicity Study of Escherichia coli-Derived Recombinant Human Bone Morphogenetic Protein-2 in Rat. Asian Spine J., 2014. 8(2): p. 113-8.
- 4. JH Lee and EN Lee, et. al., The short-term effects of repetitive E. coli-derived rhBMP-2 administration through intravenous injection in rats. Drug Chem Toxicol, 2014. 37(1): p. 40-7.

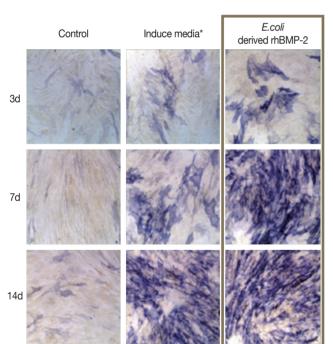
rhBMP-2의 In Vitro Osteoinductive Activity 보고

In vitro 골분화 분석의 기본 원리

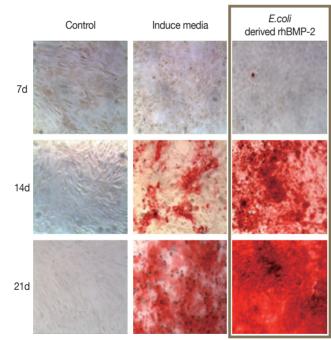
* Alkaline phosphate (ALP, 알칼라인 인산분해효소)

세포 내에 존재하는 인산(phosphatate) 가닥을 인산기로 만들어주어 칼슘이온과 만나 인산 칼슘 (calcium phosphate)으로 축적할 수 있게 해 주는 효소, 골분화 과정에서 급격하게 증가.

미분화 중간엽줄기세포


- Alkaline phosphatase 생산 불가
- Calcium deposition 불가

골세포


- Alkaline phosphatase 생산 가능Calcium deposition 가능
- ALP와 칼슘의 생성량을 염색 또는 정량하여 골분화의 척도로 분석함.

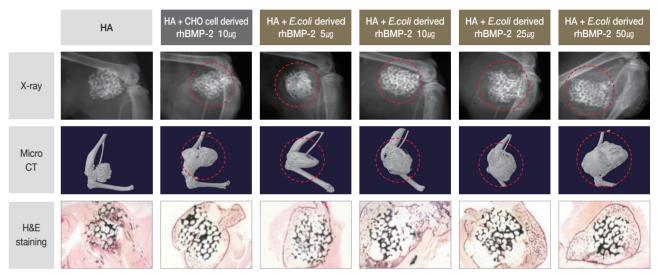
ALP 염색 결과 (보라색)1

칼슘 염색 결과 (빨간색)1

rhBMP-2

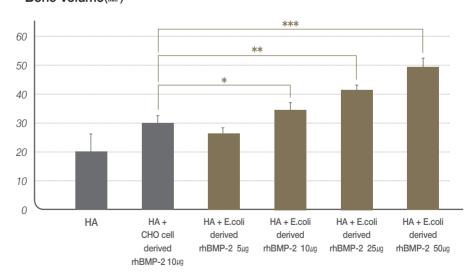
*Induce media : 중간엽 줄기세포의 골분화를 유도하기 위한 성분으로 구성된 배지로 dexamethason, beta-glycerophosphate, ascorbic acid가 함유되어 있습니다.

rhBMP-2 처리 후 인간중간엽줄기세포 (human mesenchymal stem cell)가 골분화되어 ALP와 칼슘의 생성이 크게 증가하였고, 이는 rhBMP-2가 중간엽줄기세포의 골분화를 유도한다는 결과입니다.


Ref.

1. JH Lee and SJ Jang et. al., Expression, Purification and Osteogenic Bioactivity of Recombinant Human BMP-2 Derived by Escherichia Coli. Tissue Engineering and Regenerative Medicine, 2011. 8(1): p. 8-15.

rhBMP-2의 In Vivo Ectopic Bone Formation 효과


Balb/c Mouse 대퇴부 근육 이식 실험¹

rhBMP-2는 Mouse Model에서 기존 CHO cell derived rhBMP-2 와 동등 이상의 Ectopic Bone Formation을 유도하였으며 그 효과는 농도에 비례하여 증가하였습니다.

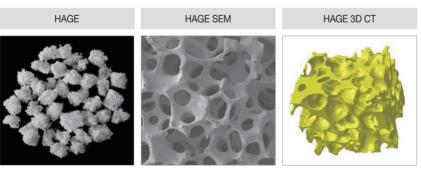
*H&E staining: Haematoxylin and eosin staining

Bone Volume(mm³)

Ref

NOVOSIS Carrier 탐색 1 **Hydroxyapatite(HA)**

Hydroxyapatite(HA)의 다공구조 결정1


다양한 다공구조의 HA 중 300m pore size를 가지는 HA가 Rabbit Lumbar Fusion Model에서 Implantation 8주 후에도 가장 좋은 물리적 강도(Compressive Strength)를 보였습니다.

Implant type (إm)	Pre-implant ^a	Post-implant 8 week a (n)	Increment ^a	Increment / macroporosity
Cylinder, 50	12.7 ± 1.36(3)	14.5 ± 7.33(3)	1.8	0.14
Cylinder, 100	6.12 ± 2.02(5)	8.65 ± 4.87(3)	2.5	0.12
Cylinder, 300	7.98 ± 1.66(4)	15.8 ± 5.73(3)	7.8 ^b	0.33
Cylinder, 500	10.3 ± 3.58(4)	11.5 ± 4.52(4)	1.2	0.04
Spnge	0.24 ± 0.05(6)	4.53 ± 2.14(5)	4.3 ^b	-
Cross	0.19 ± 0.07(3)	7.83 ± 3.26(5)	7.6 ^b	0.31

^aUnit : MPa

결정된 Hydroxyapatite(HA)의 표면 구조 및 특성2

HA는 70% Macro Porosity, 10% Micro Porosity, 80% Total Porosity를 가지는 개방형 다공구조(interconnective porous structure) Granule로 제작되었습니다.

*HAGE: Hydroxyapatite Granule Extralarge

Sample #	Macro porosity (%)	Interconnectivity (%)
1	71.6	99.9
2	70.2	99.5
3	65.9	99.6
Mean ± SD	69.2 ± 3.00	99.7 ± 0.23

Hydroxyapatite(HA)의 rhBMP-2 Soaking

HA Granule 3g(8cc)은 rhBMP-2 3mg(1mg/mL 농도)을 완전히 흡수하여 조작 시 흘러내리거나 용기에 남지 않습니다.

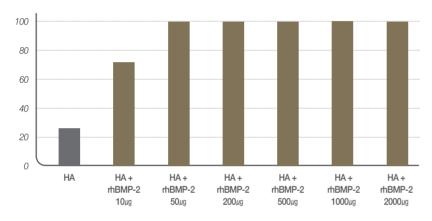
(육안 식별을 위해 색소 투여) 주입

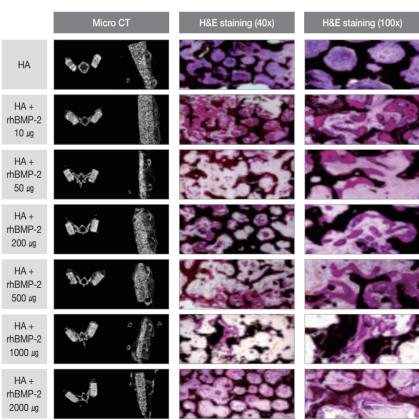
HAGE가 rhBMP-2를 완전히 머금은 상태

용기에 남지 않고 rhBMP-2가 HAGE에 100% 흡수됨을 확인

^b Statistical significance, *P*<0.05.

^{1.} JH Lee and SJ Jang et. al., Expression, Purification and Osteogenic Bioactivity of Recombinant Human BMP-2 Derived by Escherichia Coli. Tissue Engineering and Regenerative Medicine, 2011. 8(1): p. 8-15. 2. Data on file, BA06-DQ-REP-004, 합성재료이식용뼈 기공율 및 기공 연결성에 관한 보고서

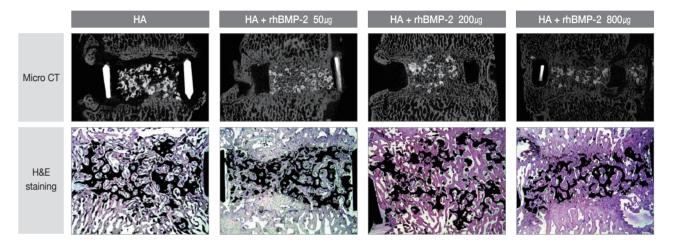

HA Carrier와 rhBMP-2의 소동물 수준 골형성 효과


토끼 후외방 척추 유합 모델 '

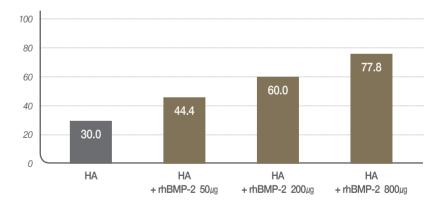
(Rabbit Posterolateral fusion Model)
- 6 weeks

rhBMP-2는 척추 유합 모델에서 HA Carrier 대비(25% 유합) 농도에 비례하여 유합율을 증가시켰고, 50㎏ 이상의 농도에서 충분한 골유합 효과를 나타내었습니다.

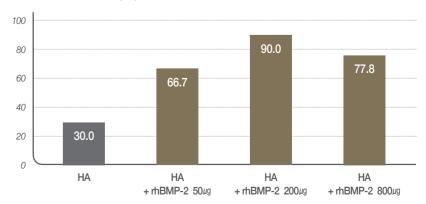
Union rate(%)



Ref.


HA Carrier와 rhBMP-2의 중동물 수준 골형성 효과¹

미니피그 전방 척추 유합 모델

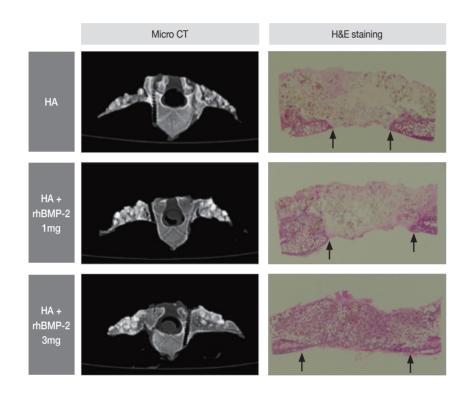

(Mini-pig Spinal Anterior Interbody Fusion Model) - 8 weeks rhBMP-2는 전방 척추 유합 모델에서 HA Carrier 대비(30% 유합) 농도에 비례하여 유합율을 증가시켰습니다.

Union rate within cages(%)

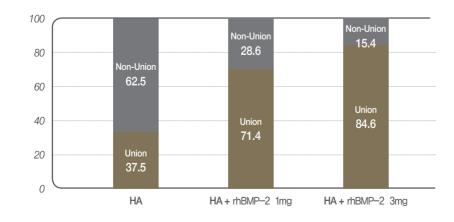
Overall union rate(%)

15

Ref.


^{1.} JH Lee, et al., Comparative study of fusion rate induced by different dosages of Escherichia coli-derived recombinant human bone morphogenetic protein-2 using hydroxyapatite carrier. The Spine Journal, 2012 Mar; 12(3):239-248.

^{1.} CJ Hwang and JH Lee, et. al., Evaluation of the efficacy of Escherichia coli-derived recombinant human bone morphogenetic protein-2 in a mini-pig spinal anterior interbody fusion model. Bone Joint J, 2013. 95-B(2): p. 217-23.


HA Carrier와 rhBMP-2의 중동물 수준 골형성 효과

미니피그 후외방 척추 유합 모델 '

(Mini-pig Spinal Posterolateral Lumbar Fusion Model) - 8 weeks rhBMP-2는 후외방 척추 유합 모델에서 HA Carrier 대비(37.5% 유합) 농도에 비례하여 유합율을 증가시켰습니다.

Union rate(%)

Ref. -

Hydroxyapatite 재료의 임상적 효과

• 연구목적 단분절 척추 후외방 유합술(Short-segmental Posterolateral Spinal Fusion) 시

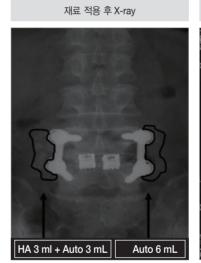
HA bone chip + 자가골 이식군과 자가골 단독 이식군의 동등성 평가

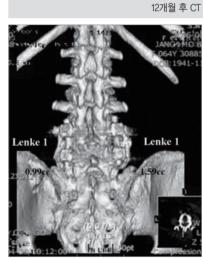
퇴행성 척추질환인 척추관 협착증 또는 Grade 1 또는 2 척추 전방전위증 중 하나의 원인으로 척추경 나사못 고정술을 요하는 자 중 1, 2 Level PLIF 또는

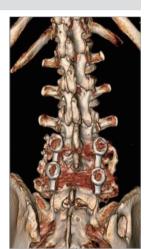
PLF가 필요한 총 33명 피험자

• 연구 방법 첫추후궁절제된 bone chip이 담긴 cage로 PLIF 또는 척추경 나사못으로 PLF가

필요한 피험자에게 한쪽에는 HA 3mL + 자기골 3mL를, 다른 쪽에는 자기골

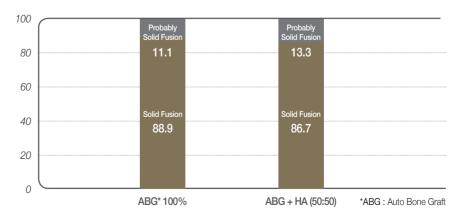

6mL(대조군)를 이식


• 평가 방법 3, 6, 12개월째 방사선 사진과 3D-CT 사진 평가에 의한 골 유합, 유합 부피.


골 흡수율

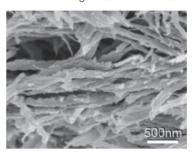
• 연구 대상

HA 적용 시(자가골과 50:50) PLF에서 자가골 이식군 대비 동등 수준의 골유합율을 나타내었습니다.



17

Union rate(%, 12 months)



^{1.} CB Kong and JH Lee, et. al., Posterolateral lumbar fusion using Escherichia coli-derived rhBMP-2/hydroxyapatite in the mini pig. Spine J, 2014. 14(12): p. 2959-67.

인산칼슘(CaP) 계열 골이식재의 장점

특징분류	콜라겐 스폰지	인산칼슘계열 골이식재
생체적합성 (Biocompatibility)	있음1	있음1
골 전도성 (Osteoinductivity)	없음 ²	있음1
물리적 강도 (Mechanical strength)	약함²	강함1
체내분해속도	짧음(2주 이내) ²	긺(수 개월 이상) ³
BMP-2 loading efficiency	0.135mg rhBMP-2/ml Collagen ²	1,68mg rhBMP-2/ml BCP (콜라겐 대비 약 12,5 배) ⁴
이식 후 반감기 (T _{1/2})	3.76일 BCP/Collagen Composite ⁵	7.51일 BCP only (더 오래 방출됨) ⁴
BMP-2 잔류량 (retained BMP-2)	10일 후 : 10% 미만 보유 17일 이후 : 완전히 방출되어 미검출 ⁶	21일 후 : 27±5% 보유 (더 오래 방출됨) 28일 후 : 기저치 대비 25% 이상 보유 ^{7,8}
BMP-2 전달 mechanism (확산)	다공구조에 물리적 흡수 (스폰지효과) 초반 Burst release 발생 압력이 가해지면 쉽게 흘러나옴 ⁹	다공구조에 물리적 흡수 (스폰지효과) 초반 Burst release 발생 8
BMP-2 전달 mechanism (정전기력)	없음 ¹⁰	BMP-2 단백질의 양전하 성질과 CaP 재료의 음전하 성질에 의한 상호작용. ^{11,12}
BMP-2 전달 mechanism (수소결합)	없음 ¹⁰	-OH, -NH₂ 작용기가 관여하여 서서히 방출되게 함. [™]
BMP-2 방출 패턴	Initial burst release 지지체나 표면부착 단백질과 상호작용 없이 빠르게 확산 ¹⁰	Sustained release 수 분 이내에 80% 이상 BMP-2 단백질이 binding하며 천천히 방출 ¹³

Mineralized collagen fiber at bone tissue

골조직은 콜라겐 섬유와 인산칼슘(수산화아파타이 트)으로 구성되어 있기 때문에 골 조직 재생을 위한 골 이식재의 주요 성분으로 사용됩니다.

BMP-2 단백질의 초반 대량방출 (Initial burst release)은 이식부 염증이나 국소적 골파괴 등과 같은 부작용을 일으킬 수 있습니다. (효과를 나타내기 위하여 고농도의 단백질 투여를 필요하기 때문입니다.) 14,15

BMP-2 단백질의 서방출 (Sustained release)은 골재생이 필요한 부위로 줄기세포를 끌어오는데 중요한 역할을 하며, 동일용량의 BMP-2 단백질을 사용하더라도 서방형 지지체를 사용하였을 때 더 좋은 골 형성능을 보였습니다. 16

Ref.

Spine (Phila Pa 1976), 2009. 34(6): p. 539-50.

- 1. WJ King and PH Krebsbach, Growth factor delivery: how surface interactions modulate release in vitro and in vivo. Adv Drug Deliv Rev, 2012. 64(12): p. 1239-56.
- 2. W Friess and H Uludag, et. al., Characterization of absorbable collagen sponges as rhBMP-2 carriers. Int J Pharm, 1999. 187(1): p. 91-9.
- 3. S Schaefer and R Detsch, et. al., How Degradation of Calcium Phosphate Bone Substitute Materials is influenced by Phase Composition and Porosity. Advanced Engineering Materials, 2011. 13(4): p. 342-350.
- 4. J Louis-Ugbo and HS Kim, et. al., Retention of 125I-labeled recombinant human bone morphogenetic protein-2 by biphasic calcium phosphate or a composite sponge in a rabbit posterolateral spine arthrodesis model. J Orthop Res, 2002. 20(5): p. 1050-9.
- 5. ML Bouxsein and TJ Turek, et. al., Recombinant human bone morphogenetic protein-2 accelerates healing in a rabbit ulnar osteotomy model. J Bone Joint Surg Am., 2001. 83-A(8): p. 1219-30.
- 6. W Friess and H Uludag, et. al., Characterization of absorbable collagen sponges as rhBMP-2 carriers. Int J Pharm, 1999. 187(1): p. 91-9.
- 7. PQ Ruhe and OC Boerman, et. al., In vivo release of rhBMP-2 loaded porous calcium phosphate cement pretreated with albumin. J Mater Sci Mater Med, 2006. 17(10): p. 919-27.
- 8. J Tazaki and M Murata, et. al., BMP-2 release and dose-response studies in hydroxyapatite and beta-tricalcium phosphate. Biomed Mater Eng., 2009. 19(2-3): p. 141-6.
- 9. EJ Carragee and EL Hurwitz, et. al., A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned. Spine J, 2011. 11(6): p. 471-91.
- 10. X Huang and CS Brazel, On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. J Control Release, 2001. 73(2-3): p. 121-36.
- $11.\,X\,Dong\,and\,Q\,Wang,\,et.\,al.,\,Understanding\,adsorption-desorption\,dynamics\,of\,BMP-2\,on\,hydroxyapatite\,(001)\,surface.\,\textit{Biophys}\,J,\,2007.\,93(3):\,p.\,750-9.$
- 12. J Patterson and R Siew, et. al., Hyaluronic acid hydrogels with controlled degradation properties for oriented bone regeneration. Biomaterials, 2010. 31(26): p. 6772-81.
- 13. T Boix and J Gomez-Morales, et. al., Adsorption of recombinant human bone morphogenetic protein rhBMP-2m onto hydroxyapatite. J Inorg Biochem, 2005. 99(5): p. 1043-50.
- 14. EJ Carragee and EL Hurwitz, et. al., A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned. Spine J, 2011. 11(6): p. 471-91.
- 15. JM Toth and SD Boden, et. al., Short-term osteoclastic activity induced by locally high concentrations of recombinant human bone morphogenetic protein-2 in a cancellous bone environment.
- 16. JD Boerckel and YM Kolambkar, et. al., Effects of protein dose and delivery system on BMP-mediated bone regeneration. Biomaterials, 2011. 32(22): p. 5241-51.

NOVOSIS _ Clinical Study

The Clinical Trial for Evaluation of Efficacy and Safety of Novosis in Posterolateral Spinal Fusion¹

유효성 및 안전성 측면에 대해서 자기골을 사용한 시술과 비교하여 평가

• 연구 대상 ① 광범위 감압술을 요하는 척추관 협착증

② 광범위한 후궁절제술이 필요한 정도의 심한 추간판 탈출증

③ Grade 1 척추 전방전위증 또는 척추분리증 중 하나의 원인으로 후외방 유합술을 요하는 자 중 L1-S1 사이의 단분절 유합술이 필요한 총 100명의 피험자

• 연구 방법 L1~S1 사이의 단분절 이식이 필요한 피험자에게 노보시스(시험군) 또는

자가골(대조군)을 이식

• 유효성 평가방법 12, 24주째 방사선 사진 평가에 의한 골유합도, 12, 24주째 CT 사진 평가에 의한

골유합도, ODI, VAS, SF-36 기저치 대비 변회율 (PP군 총 87명: 노보시스 40명, 자가골 이식 47명)

• 안전성 평가방법 임상적 이상사례 유무 및 양상평가, BMP-2 항체 생성 여부

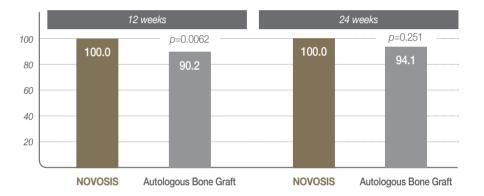
(ITT군 총 94명: 노보시스 43명, 자가골 이식 51명)

01. 골유합율 / 골유합도 - 국내 최초 임상으로 입증된 빠르고 높은 유합율

02. ODI 변화 / SF-36 변화 / VAS 변화 - 우수한 QOL 개선 효과

03. 우수한 안전성

Ref.

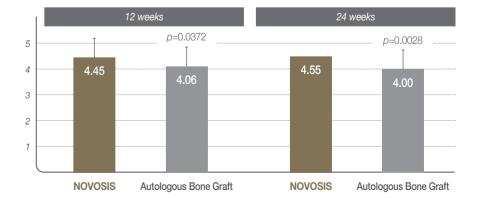

1. 임상시험 결과보고서(BioALPHA, BA06-CP01)

NOVOSIS 01

국내 최초 임상으로 입증된 빠르고 높은 유합율¹

골유합율(%)

노보시스 적용 시 척추 후외방 유합술(PLF)에서 자가골 이식 대비 12주차에 빠른 골유합을 보였고, 24주차 골유합율은 자가골 이식과 동등 이상의 수준을 보였습니다.



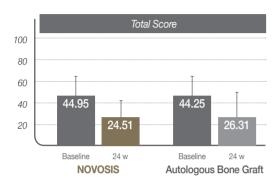
골유합도(Grade)

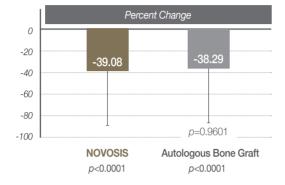
노보시스 적용 시 골유합도는 자가골 이식 대비 12주차와 24주차 모두에서 높게 나타났습니다.

Fusion	Grade	Fusion
Non Fusion	1	No
	2	Partial or Limited unilateral
	3	Partial or Limited bilateral
Fusion	4	Solid unilateral
	5	Solid bilateral

25

Ref.

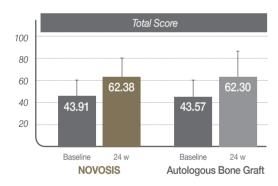

1. 임상시험 결과보고서(BioALPHA, BA06-CP01)

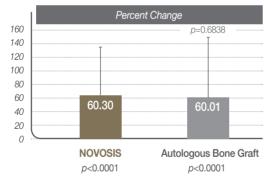

우수한 QOL 개선 효과¹

ODI 변화

*ODI 란? Oswestry 장애지수. 상해에 따른 일상생활의 불편함을 조사하는 설문으로 점수가 높을수록 삶의 질이 떨어짐. 두 군 모두 장애지수가 감소하여 일상생활에서의 불편함이 개선되었습니다.

두 군 모두 전반적인 건강상태가 개선되었습니다.

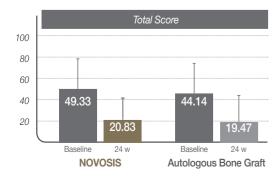


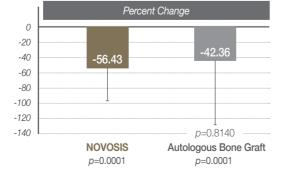


SF-36 변화

**SF-36이란? 36-Item Short Form Survey. 질병이 신체적, 정신적 건강 등 삶의 질에 미치는 영향을

조사하기 위한 설문으로 수치가 높을수록 건강상태가 향상됨.



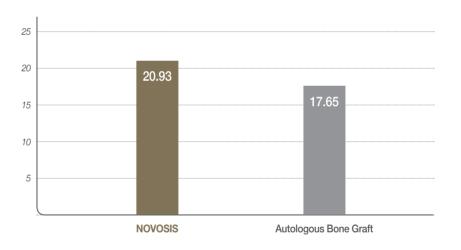


VAS 변화 - 허리통증

*VAS 란? Visual Analogue Scale. 환자에게 통증 없음을 0, 참을 수 없는 통증을 10으로 조사하는 방법, 점수가 낮을수록 통증이 없음.

두 군 모두 통증 정도가 개선되었고, 노보시스군에서 더 많은 감소율을 보였습니다.

Ref.


1. 임상시험 결과보고서(BioALPHA, BA06-CP01)

NOVOSIS 03

우수한 안전성1

의료기기 이상반응(%)

노보시스 적용 시 의료기기 이상반응(Adverse Device Effect)은 자가골 이식과 통계적으로 차이가 없었습니다. (p=0.6869) 타 논문 등에서 기 보고 된 Osteolysis, Ectopic Bone Formation, Wound Complication 등의 부작용은 발생하지 않았습니다. 또한, BMP-2 항체 검사 결과 항체가 상승한 임상시험 피험자는 없었습니다.

NOVOSIS (N=43)	Autogenous Bone Graft (N=51)
9 patients / 14 cases	9 patients / 18 cases

- 1. 임상시험 결과보고서(BioALPHA, BA06-CP01)
- 2. NB Chutkan, The effect of recombinant human bone morphogenetic protein-2 in single-level posterior lumbar interbody arthrodesis. Orthopedics, 2013. 36(9): p. 712-3.
- 3. L Yan and Z Chang, et. al., Efficacy of rhBMP-2 versus iliac crest bone graft for posterior C1-C2 fusion in patients older than 60 years. Orthopedics, 2014. 37(1): p. e51-7.

rhBMP-2 01

〈PLF〉 자가골 대비 높은 유합율

• 연구목적 단일 레벨 척추 후외방 유합술(PLF) 대상 환자에서 자가골 이식군 대비

콜라겐 / β-TCP/HA carrier와 rhBMP-2 효과 비교 연구

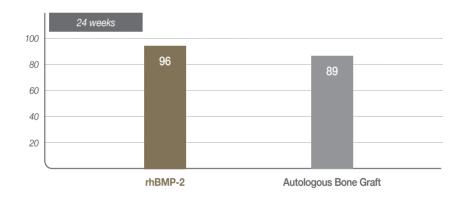
• 연구대상 463명의 요추부 단일레벨 퇴행성 질환을 가지는 환자 중 단일레벨 PLF를

통하여 치료될 수 있는 Grade 1 이하의 척추전방전위증 환자

• 연구방법 모든 환자를 대상으로 Open Midline Approach를 통해 단일 레벨

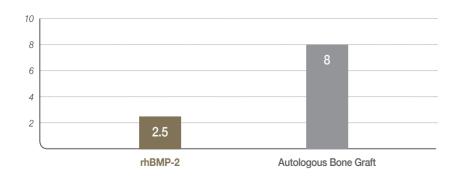
Instrumented PLF 시행 자기골 이식군(224명, 대조군)과 rhBMP-2 군

(239명, 시험군)을 비교, 24개월 간 추시


• 유효성 평가 방사선 사진 촬영 및 컴퓨터 단층 촬영 이미지 상 골유합율, 수술 실패율,

재수술율

• 안전성 평가 Oswestry Disability Index(ODI), Short Form(SF)-36, 등 및 다리 통증 점수(VAS)

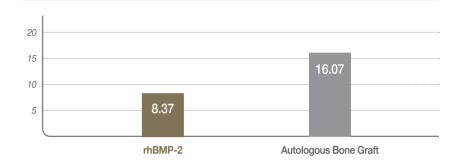

골유합율(%)

rhBMP-2 적용 시 척추 후외방 유합술(PLF)에서 자가골 이식 대비 24주차에 유합율이 7% 증가하였습니다. (p=0.014)

수술 실패율(%)

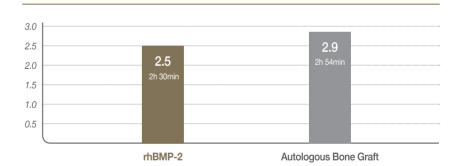
rhBMP-2 적용 시 척추 후외방 유합술(PLF)에서 자가골 이식 대비 수술 실패율이 3배 이상 감소하였습니다. (p=0.011)

Ref.

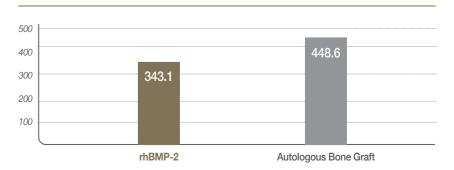

1. JR Dimar, 2nd and SD Glassman, et. al., Olinical and radiographic analysis of an optimized rhBMP-2 formulation as an autograft replacement in posterolateral lumbar spine arthrodesis. J Bone Joint Surg Am, 2009. 91(6): p. 1377-86.

rhBMP-2 01

〈PLF〉 자가골 대비 높은 유합율


골유합율(%)

rhBMP-2 적용 시 척추 후외방 유합술(PLF)에서 자가골 이식 대비 재수술율이 약 2배 감소하였습니다. (p=0.015)


평균 수술 시간(h)

rhBMP-2 적용 시 척추 후외방 유합술(PLF)에서 자가골 이식 대비 재수술율이 약 2배 감소하였습니다. (p=0.015)

평균 출혈량(mL)

rhBMP-2 적용 시 척추 후외방 유합술(PLF)에서 자가골 이식 대비 평균 출혈량이 23.5% 감소하였습니다.

1. JR Dimar, 2nd and SD Glassman, et. al., Olinical and radiographic analysis of an optimized rhBMP-2 formulation as an autograft replacement in posterolateral lumbar spine arthrodesis. J Bone Joint Surg Am, 2009. 91(6): p. 1377-86.

rhBMP-2 02

〈골절〉 표준치료 대비 빠르고 높은 유합율

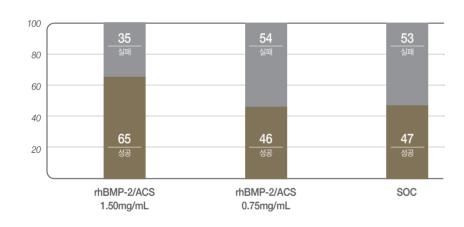
• 연구목적 mBMP-2의 개방성 경골골절의 치유 촉진과 추가적 중재수술 감소에 대한

유효성 및 안전성 평가

• 연구대상 450명의 개방성 경골 골절환자(Open Tibial Fracture)

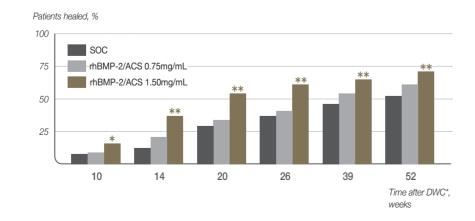
• 연구방법 Intramedullary Nail Fixation과 연조직 치료를 동반하는 표준치료(Standard of

Care, SOC) 대조군 대비 0.75mg/mL, 1.50mg/mL 농도의 rhBMP-2를 흡수성 콜라겐스폰지 (Absorbable Collagen Sponge, ACS)와 함께 적용한 시험군을


비교, 12개월 간 추시

• 유효성 평가 골절 유합율, 유합 성공율

• 안전성 평가 수술 실패율, 침습적 중재수술 시행율, 재골절율, 감염율

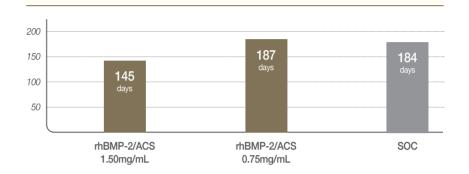

방사선 사진상 유합 성공율(%)

rhBMP-2 적용 시 개방성 경골 골절에서 대조군 대비 방사선 사진상 높은 유합 성공율을 보였습니다.(p=0.0028)

52주간 유합율(%)

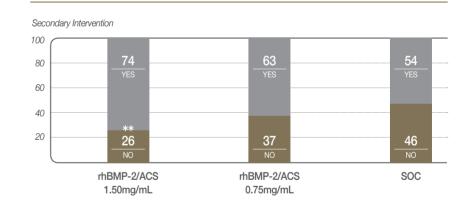
rhBMP-2 적용 시 개방성 경골 골절에서 대조군 대비 52주간 높은 유합율을 보였습니다. (** = SOC 대비 p \langle 0.01, * = SOC 대비 p \langle 0.05)

*DWC: Definitive Wound Closure

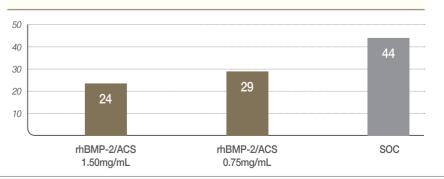

Ref.

rhBMP-2 02

〈골절〉 표준치료 대비 빠르고 높은 유합율


골절 치유 속도(일)

rhBMP-2 적용 시 개방성 경골 골절에서 대조군 대비 빠른 골절 치유 속도를 보였습니다.


추가적 중재수술 발생율(%)

rhBMP-2 적용 시 개방성 경골 골절에서 대조군 대비 추가적으로 중재수술 발생이 적었습니다. (** SOC 대비 p = 0.0005)

감염율(GA III A and III B)

rhBMP-2 적용 시 심각한 개방성 경골 골절에서 대조군 대비 감염율이 낮았습니다. (p = 0.047)

31

Rof

^{1.} S Govender and C Csimma, et. al., Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures: a prospective, controlled, randomized study of four hundred and fifty patients. J Bone Joint Surg Am, 2002. 84-A(12): p. 2123-34.

^{1.} S Govender and C Csimma, et. al., Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures: a prospective, controlled, randomized study of four hundred and fifty patients. J Bone Joint Surg Am, 2002. 84-A(12): p. 2123-34.

Product Information

품목명	Novosis [복합재료이식용뼈]
식약처 분류번호	B04420,03 [4등급]
심평원 코드	(비급여) 재조합 골형성 촉진 단백질(rhBMP-2) 함유 골이식재
사용목적	(1) 후방기기고정술 및 L1~S1의 요추 후외방유합술 (2) 외상성 상하지 급성골절로 인한 골결손
성능	노보시스는 100% Hydroxyapatite Ceramic으로 이루어진 합성골이식재와 별도 포장된 Bone Morphogenetic Protein-2 (rhBMP-2) 및 멸균주사용수로 구성되어, 생체친화성이 높고, 골전도성 및 골유도성이 있습니다.

제품 구성

BI	MP	Carrier		
BMP 함량	주사용수	HA 용량	HA 부피	
0.5 ma	0.E.ml	0.5 ~	HAGL 1.0 cc	
0.5 mg	0.5 ml	0.5 g	HAGE 1.3 cc	
1.0 mg	1.0 ml	1.0 g	HAGL 2.0 cc	
1.0 mg	1.0 1111		HAGE 2.7 cc	
2 0 ma	3.0 ml	200	a o mil a o m	HAGL 6.0 cc
3.0 mg	3.0 1111	3.0 g	HAGE 8.0 cc	

구성품 사진

· Granule Type (17년 상반기)

주사용수 rhBMP-2

Carrier: Hydroxyapatite

· Putty Type (18년 상반기)

주사용수 rhBMP-2 Carrier : β -Tricalcium Phosphate

저장방법 차광된 장소에서 냉장보관 (2°C~8°C) 사용기한 제조일로부터 36개월

INSTRUCTION

포장된 골이식재를 멸균된 트레이에 담는다.

BMP-2가 용해되도록 조심스럽게 흔든다.

④주사기를 사용하여 주사용수를 모두 뽑아낸다.

완전히 용해된 BMP-2 용액을 ®주사기를 사용하여 완전히 뽑아낸다.

뽑아낸 주사용수를 BMP-2 단백질부에 주입한다.

뽑아낸 BMP-2를 모두 골이식재에 고르게 뿌려준다. 10분간 soaking 후 골 이식한다.